Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.654
Filtrar
1.
Nature ; 628(8009): 910-918, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570680

RESUMO

OSCA/TMEM63 channels are the largest known family of mechanosensitive channels1-3, playing critical roles in plant4-7 and mammalian8,9 mechanotransduction. Here we determined 44 cryogenic electron microscopy structures of OSCA/TMEM63 channels in different environments to investigate the molecular basis of OSCA/TMEM63 channel mechanosensitivity. In nanodiscs, we mimicked increased membrane tension and observed a dilated pore with membrane access in one of the OSCA1.2 subunits. In liposomes, we captured the fully open structure of OSCA1.2 in the inside-in orientation, in which the pore shows a large lateral opening to the membrane. Unusually for ion channels, structural, functional and computational evidence supports the existence of a 'proteo-lipidic pore' in which lipids act as a wall of the ion permeation pathway. In the less tension-sensitive homologue OSCA3.1, we identified an 'interlocking' lipid tightly bound in the central cleft, keeping the channel closed. Mutation of the lipid-coordinating residues induced OSCA3.1 activation, revealing a conserved open conformation of OSCA channels. Our structures provide a global picture of the OSCA channel gating cycle, uncover the importance of bound lipids and show that each subunit can open independently. This expands both our understanding of channel-mediated mechanotransduction and channel pore formation, with important mechanistic implications for the TMEM16 and TMC protein families.


Assuntos
Microscopia Crioeletrônica , Ativação do Canal Iônico , Mecanotransdução Celular , Modelos Moleculares , Humanos , Lipossomos/metabolismo , Lipossomos/química , Animais , Canais Iônicos/metabolismo , Canais Iônicos/química
2.
J Chem Inf Model ; 64(8): 3360-3374, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38597744

RESUMO

HIV-1 Vpr is a multifunctional accessory protein consisting of 96 amino acids that play a critical role in viral pathogenesis. Among its diverse range of activities, Vpr can create a cation-selective ion channel within the plasma membrane. However, the oligomeric state of this channel has not yet been elucidated. In this study, we investigated the conformational dynamics of Vpr helices to model the ion channel topology. First, we employed a series of multiscale simulations to investigate the specific structure of monomeric Vpr in a membrane model. During the lipid bilayer self-assembly coarse grain simulation, the C-terminal helix (residues 56-77) effectively formed the transmembrane region, while the N-terminal helix exhibited an amphipathic nature by associating horizontally with a single leaflet. All-atom molecular dynamics (MD) simulations of full-length Vpr inside a phospholipid bilayer show that the C-terminal helix remains very stable inside the bilayer core in a vertical orientation. Subsequently, using the predicted C-terminal helix orientation and conformation, various oligomeric states (ranging from tetramer to heptamer) possibly forming the Vpr ion channel were built and further evaluated. Among these models, the pentameric form exhibited consistent stability in MD simulations and displayed a compatible conformation for a water-assisted ion transport mechanism. This study provides structural insights into the ion channel activity of the Vpr protein and the foundation for developing therapeutics against HIV-1 Vpr-related conditions.


Assuntos
Canais Iônicos , Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Produtos do Gene vpr do Vírus da Imunodeficiência Humana , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/química , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Canais Iônicos/química , Canais Iônicos/metabolismo , Conformação Proteica , HIV-1/química
3.
Protein Sci ; 33(4): e4965, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38501596

RESUMO

The mechanosensitive channel of large conductance (MscL) acts as an "emergency release valve" that protects bacterial cells from acute hypoosmotic stress, and it serves as a paradigm for studying the mechanism underlying the transduction of mechanical forces. MscL gating is proposed to initiate with an expansion without opening, followed by subsequent pore opening via a number of intermediate substates, and ends in a full opening. However, the details of gating process are still largely unknown. Using in vivo viability assay, single channel patch clamp recording, cysteine cross-linking, and tryptophan fluorescence quenching approach, we identified and characterized MscL mutants with different occupancies of constriction region in the pore domain. The results demonstrated the shifts of constriction point along the gating pathway towards cytoplasic side from residue G26, though G22, to L19 upon gating, indicating the closed-expanded transitions coupling of the expansion of tightly packed hydrophobic constriction region to conduct the initial ion permeation in response to the membrane tension. Furthermore, these transitions were regulated by the hydrophobic and lipidic interaction with the constricting "hot spots". Our data reveal a new resolution of the transitions from the closed to the opening substate of MscL, providing insights into the gating mechanisms of MscL.


Assuntos
Proteínas de Escherichia coli , Canais Iônicos , Canais Iônicos/genética , Canais Iônicos/química , Canais Iônicos/metabolismo , Ativação do Canal Iônico/fisiologia , Proteínas de Escherichia coli/química , Constrição
4.
Nat Commun ; 15(1): 1296, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351257

RESUMO

Amyloid ß (Aß) ion channels destabilize cellular ionic homeostasis, which contributes to neurotoxicity in Alzheimer's disease. The relative roles of various Aß isoforms are poorly understood. We use bilayer electrophysiology, AFM imaging, circular dichroism, FTIR and fluorescence spectroscopy to characterize channel activities of four most prevalent Aß peptides, Aß1-42, Aß1-40, and their pyroglutamylated forms (AßpE3-42, AßpE3-40) and correlate them with the peptides' structural features. Solvent-induced fluorescence splitting of tyrosine-10 is discovered and used to assess the sequestration from the solvent and membrane insertion. Aß1-42 effectively embeds in lipid membranes, contains large fraction of ß-sheet in a ß-barrel-like structure, forms multi-subunit pores in membranes, and displays well-defined ion channel features. In contrast, the other peptides are partially solvent-exposed, contain minimal ß-sheet structure, form less-ordered assemblies, and produce irregular ionic currents. These findings illuminate the structural basis of Aß neurotoxicity through membrane permeabilization and may help develop therapies that target Aß-membrane interactions.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Peptídeos beta-Amiloides/metabolismo , Tirosina , Canais Iônicos/química , Solventes , Fragmentos de Peptídeos/metabolismo
5.
J Cell Biol ; 223(4)2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38252080

RESUMO

The compartmentalization of the plasma membrane (PM) is a fundamental feature of cells. The diffusivity of membrane proteins is significantly lower in biological than in artificial membranes. This is likely due to actin filaments, but assays to prove a direct dependence remain elusive. We recently showed that periodic actin rings in the neuronal axon initial segment (AIS) confine membrane protein motion between them. Still, the local enrichment of ion channels offers an alternative explanation. Here we show, using computational modeling, that in contrast to actin rings, ion channels in the AIS cannot mediate confinement. Furthermore, we show, employing a combinatorial approach of single particle tracking and super-resolution microscopy, that actin rings are close to the PM and that they confine membrane proteins in several neuronal cell types. Finally, we show that actin disruption leads to loss of compartmentalization. Taken together, we here develop a system for the investigation of membrane compartmentalization and show that actin rings compartmentalize the PM.


Assuntos
Actinas , Membrana Celular , Canais Iônicos , Actinas/química , Membrana Celular/química , Canais Iônicos/química , Animais , Ratos , Neurônios , Modelos Químicos
6.
J Biol Chem ; 300(3): 105674, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272234

RESUMO

In voltage-gated Na+ and K+ channels, the hydrophobicity of noncharged residues in the S4 helix has been shown to regulate the S4 movement underlying the process of voltage-sensing domain (VSD) activation. In voltage-gated proton channel Hv1, there is a bulky noncharged tryptophan residue located at the S4 transmembrane segment. This tryptophan remains entirely conserved across all Hv1 members but is not seen in other voltage-gated ion channels, indicating that the tryptophan contributes different roles in VSD activation. The conserved tryptophan of human voltage-gated proton channel Hv1 is Trp207 (W207). Here, we showed that W207 modifies human Hv1 voltage-dependent activation, and small residues replacement at position 207 strongly perturbs Hv1 channel opening and closing, and the size of the side chain instead of the hydrophobic group of W207 regulates the transition between closed and open states of the channel. We conclude that the large side chain of tryptophan controls the energy barrier during the Hv1 VSD transition.


Assuntos
Ativação do Canal Iônico , Canais Iônicos , Triptofano , Humanos , Ativação do Canal Iônico/fisiologia , Canais Iônicos/química , Canais Iônicos/genética , Canais Iônicos/metabolismo , Triptofano/genética , Triptofano/metabolismo , Domínios Proteicos/genética , Mutação
7.
Br J Pharmacol ; 180 Suppl 2: S23-S144, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-38123151

RESUMO

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and about 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.16177. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Receptores Acoplados a Proteínas G , Humanos , Ligantes , Canais Iônicos/química , Receptores Citoplasmáticos e Nucleares
8.
Br J Pharmacol ; 180 Suppl 2: S374-S469, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-38123156

RESUMO

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and over 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16182. Transporters are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Farmacologia , Humanos , Ligantes , Canais Iônicos/química , Receptores Acoplados a Proteínas G , Receptores Citoplasmáticos e Nucleares
9.
Br J Pharmacol ; 180 Suppl 2: S241-S288, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-38123155

RESUMO

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and nearly 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16180. Catalytic receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ion channels, nuclear hormone receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Farmacologia , Humanos , Ligantes , Receptores Acoplados a Proteínas G , Canais Iônicos/química , Receptores Citoplasmáticos e Nucleares
10.
Br J Pharmacol ; 180 Suppl 2: S145-S222, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-38123150

RESUMO

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and over 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16178. Ion channels are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Farmacologia , Humanos , Canais Iônicos/química , Ligantes , Receptores Acoplados a Proteínas G , Bases de Dados Factuais
11.
J Phys Chem B ; 127(45): 9685-9696, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37921649

RESUMO

The uncoupling protein 1 (UCP1) dissipates the transmembrane (TM) proton gradient in the inner mitochondrial membrane (IMM) by leaking protons across the membrane and producing heat in the process. Such a nonshivering production of heat in the brown adipose tissue can combat obesity-related diseases. UCP1-associated proton leak is activated by free fatty acids and inhibited by purine nucleotides. The mechanism of proton leak and the binding sites of the activators (fatty acids) remain unknown, while the binding site of the inhibitors (nucleotides) was described recently. Using molecular dynamics simulations, we generated a conformational ensemble of UCP1. Using metadynamics-based free energy calculations, we obtained the most likely ATP-bound conformation of UCP1. Our conformational ensemble provides a molecular basis for a breadth of prior biochemical data available for UCP1. Based on the simulations, we make the following testable predictions about the mechanisms of activation of proton leak and proton leak inhibition by ATP: (1) R277 plays the dual role of stabilizing ATP at the binding site for inhibition and acting as a proton surrogate for D28 in the absence of a proton during proton transport, (2) the binding of ATP to UCP1 is mediated by residues R84, R92, R183, and S88, (3) R92 shuttles ATP from the E191-R92 gate in the intermembrane space to the nucleotide binding site and serves to increase ATP affinity, (4) ATP can inhibit proton leak by controlling the ionization states of matrix facing lysine residues such as K269 and K56, and (5) fatty acids can bind to UCP1 from the IMM either via the cavity between TM1 and TM2 or between TM5 and TM6. Our simulations set the platform for future investigations into the proton transport and inhibition mechanisms of UCP1.


Assuntos
Canais Iônicos , Prótons , Canais Iônicos/química , Proteína Desacopladora 1/metabolismo , Proteínas Mitocondriais/química , Ácidos Graxos/metabolismo , Nucleotídeos/metabolismo , Trifosfato de Adenosina
12.
Nature ; 620(7976): 1117-1125, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37587339

RESUMO

PIEZOs are mechanosensitive ion channels that convert force into chemoelectric signals1,2 and have essential roles in diverse physiological settings3. In vitro studies have proposed that PIEZO channels transduce mechanical force through the deformation of extensive blades of transmembrane domains emanating from a central ion-conducting pore4-8. However, little is known about how these channels interact with their native environment and which molecular movements underlie activation. Here we directly observe the conformational dynamics of the blades of individual PIEZO1 molecules in a cell using nanoscopic fluorescence imaging. Compared with previous structural models of PIEZO1, we show that the blades are significantly expanded at rest by the bending stress exerted by the plasma membrane. The degree of expansion varies dramatically along the length of the blade, where decreased binding strength between subdomains can explain increased flexibility of the distal blade. Using chemical and mechanical modulators of PIEZO1, we show that blade expansion and channel activation are correlated. Our findings begin to uncover how PIEZO1 is activated in a native environment. More generally, as we reliably detect conformational shifts of single nanometres from populations of channels, we expect that this approach will serve as a framework for the structural analysis of membrane proteins through nanoscopic imaging.


Assuntos
Canais Iônicos , Membrana Celular/metabolismo , Fluorescência , Canais Iônicos/química , Canais Iônicos/metabolismo , Modelos Moleculares , Movimento , Conformação Proteica , Análise de Célula Única
13.
Science ; 381(6659): 799-804, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37590348

RESUMO

Piezo channels are critical cellular sensors of mechanical forces. Despite their large size, ubiquitous expression, and irreplaceable roles in an ever-growing list of physiological processes, few Piezo channel-binding proteins have emerged. In this work, we found that MyoD (myoblast determination)-family inhibitor proteins (MDFIC and MDFI) are PIEZO1/2 interacting partners. These transcriptional regulators bind to PIEZO1/2 channels, regulating channel inactivation. Using single-particle cryogenic electron microscopy, we mapped the interaction site in MDFIC to a lipidated, C-terminal helix that inserts laterally into the PIEZO1 pore module. These Piezo-interacting proteins fit all the criteria for auxiliary subunits, contribute to explaining the vastly different gating kinetics of endogenous Piezo channels observed in many cell types, and elucidate mechanisms potentially involved in human lymphatic vascular disease.


Assuntos
Canais Iônicos , Fatores de Regulação Miogênica , Humanos , Microscopia Crioeletrônica , Células HEK293 , Ativação do Canal Iônico , Canais Iônicos/química , Canais Iônicos/genética , Canais Iônicos/metabolismo , Cinética , Doenças Linfáticas/genética , Mutação , Fatores de Regulação Miogênica/química , Fatores de Regulação Miogênica/genética , Fatores de Regulação Miogênica/metabolismo , Domínios Proteicos , Mioblastos/metabolismo , Animais , Camundongos
14.
Science ; 381(6657): 508-514, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37535724

RESUMO

Proton leakage from organelles is a common signal for noncanonical light chain 3B (LC3B) lipidation and inflammasome activation, processes induced upon stimulator of interferon genes (STING) activation. On the basis of structural analysis, we hypothesized that human STING is a proton channel. Indeed, we found that STING activation induced a pH increase in the Golgi and that STING reconstituted in liposomes enabled transmembrane proton transport. Compound 53 (C53), a STING agonist that binds the putative channel interface, blocked STING-induced proton flux in the Golgi and in liposomes. STING-induced LC3B lipidation and inflammasome activation were also inhibited by C53, suggesting that STING's channel activity is critical for these two processes. Thus, STING's interferon-induction function can be decoupled from its roles in LC3B lipidation and inflammasome activation.


Assuntos
Canais Iônicos , Proteínas de Membrana , Prótons , Humanos , Complexo de Golgi/metabolismo , Concentração de Íons de Hidrogênio , Inflamassomos/metabolismo , Canais Iônicos/agonistas , Canais Iônicos/química , Canais Iônicos/metabolismo , Lipossomos , Proteínas de Membrana/agonistas , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Domínios Proteicos , Células HEK293
15.
J Mol Biol ; 435(17): 168192, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37394032

RESUMO

CorA, the primary magnesium ion channel in prokaryotes and archaea, is a prototypical homopentameric ion channel that undergoes ion-dependent conformational transitions. CorA adopts five-fold symmetric non-conductive states in the presence of high concentrations of Mg2+, and highly asymmetric flexible states in its complete absence. However, the latter were of insufficient resolution to be thoroughly characterized. In order to gain additional insights into the relationship between asymmetry and channel activation, we exploited phage display selection strategies to generate conformation-specific synthetic antibodies (sABs) against CorA in the absence of Mg2+. Two sABs from these selections, C12 and C18, showed different degrees of Mg2+-sensitivity. Through structural, biochemical, and biophysical characterization, we found the sABs are both conformation-specific but probe different features of the channel under open-like conditions. C18 is highly specific to the Mg2+-depleted state of CorA and through negative-stain electron microscopy (ns-EM), we show sAB binding reflects the asymmetric arrangement of CorA protomers in Mg2+-depleted conditions. We used X-ray crystallography to determine a structure at 2.0 Å resolution of sAB C12 bound to the soluble N-terminal regulatory domain of CorA. The structure shows C12 is a competitive inhibitor of regulatory magnesium binding through its interaction with the divalent cation sensing site. We subsequently exploited this relationship to capture and visualize asymmetric CorA states in different [Mg2+] using ns-EM. We additionally utilized these sABs to provide insights into the energy landscape that governs the ion-dependent conformational transitions of CorA.


Assuntos
Anticorpos , Proteínas de Bactérias , Proteínas de Transporte de Cátions , Canais Iônicos , Magnésio , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Canais Iônicos/química , Canais Iônicos/imunologia , Magnésio/química , Magnésio/metabolismo , Conformação Proteica , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/imunologia , Anticorpos/química
16.
Microb Physiol ; 33(1): 49-62, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37321192

RESUMO

Members of the Piezo family of mechanically activated cation channels are involved in multiple physiological processes in higher eukaryotes, including vascular development, cell differentiation, touch perception, hearing, and more, but they are also common in single-celled eukaryotic microorganisms. Mutations in these proteins in humans are associated with a variety of diseases, such as colorectal adenomatous polyposis, dehydrated hereditary stomatocytosis, and hereditary xerocytosis. Available 3D structures for Piezo proteins show nine regions of four transmembrane segments each that have the same fold. Despite the remarkable similarity among the nine characteristic structural repeats in the family, no significant sequence similarity among them has been reported. Using bioinformatics approaches and the Transporter Classification Database (TCDB) as reference, we reliably identified sequence similarity among repeats based on four lines of evidence: (1) hidden Markov model-profile similarities across repeats at the family level, (2) pairwise sequence similarities between different repeats across Piezo homologs, (3) Piezo-specific conserved sequence signatures that consistently identify the same regions across repeats, and (4) conserved residues that maintain the same orientation and location in 3D space.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Humanos , Clostridioides difficile/metabolismo , Canais Iônicos/genética , Canais Iônicos/química , Canais Iônicos/metabolismo , Mutação , Sequência Conservada
17.
J Biol Chem ; 299(7): 104918, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37315791

RESUMO

Unlike other members of the voltage-gated ion channel superfamily, voltage-gated proton (Hv) channels are solely composed of voltage sensor domains without separate ion-conducting pores. Due to their unique dependence on both voltage and transmembrane pH gradients, Hv channels normally open to mediate proton efflux. Multiple cellular ligands were also found to regulate the function of Hv channels, including Zn2+, cholesterol, polyunsaturated arachidonic acid, and albumin. Our previous work showed that Zn2+ and cholesterol inhibit the human voltage-gated proton channel (hHv1) by stabilizing its S4 segment at resting state conformations. Released from phospholipids by phospholipase A2 in cells upon infection or injury, arachidonic acid regulates the function of many ion channels, including hHv1. In the present work, we examined the effects of arachidonic acid on purified hHv1 channels using liposome flux assays and revealed underlying structural mechanisms using single-molecule FRET. Our data indicated that arachidonic acid strongly activates hHv1 channels by promoting transitions of the S4 segment toward opening or "preopening" conformations. Moreover, we found that arachidonic acid even activates hHv1 channels inhibited by Zn2+ and cholesterol, providing a biophysical mechanism to activate hHv1 channels in nonexcitable cells upon infection or injury.


Assuntos
Ácido Araquidônico , Colesterol , Ativação do Canal Iônico , Canais Iônicos , Prótons , Zinco , Humanos , Albuminas/farmacologia , Ácido Araquidônico/farmacologia , Colesterol/farmacologia , Transferência Ressonante de Energia de Fluorescência , Ativação do Canal Iônico/efeitos dos fármacos , Canais Iônicos/agonistas , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/química , Canais Iônicos/metabolismo , Lipossomos/metabolismo , Fosfolipases A2/metabolismo , Imagem Individual de Molécula , Zinco/farmacologia , Concentração de Íons de Hidrogênio
18.
Sci Adv ; 9(22): eadh4251, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37256948

RESUMO

Mitochondrial uncoupling protein 1 (UCP1) gives brown adipose tissue of mammals its specialized ability to burn calories as heat for thermoregulation. When activated by fatty acids, UCP1 catalyzes the leak of protons across the mitochondrial inner membrane, short-circuiting the mitochondrion to generate heat, bypassing ATP synthesis. In contrast, purine nucleotides bind and inhibit UCP1, regulating proton leak by a molecular mechanism that is unclear. We present the cryo-electron microscopy structure of the GTP-inhibited state of UCP1, which is consistent with its nonconducting state. The purine nucleotide cross-links the transmembrane helices of UCP1 with an extensive interaction network. Our results provide a structural basis for understanding the specificity and pH dependency of the regulatory mechanism. UCP1 has retained all of the key functional and structural features required for a mitochondrial carrier-like transport mechanism. The analysis shows that inhibitor binding prevents the conformational changes that UCP1 uses to facilitate proton leak.


Assuntos
Canais Iônicos , Prótons , Humanos , Microscopia Crioeletrônica , Canais Iônicos/química , Proteínas Mitocondriais/metabolismo , Nucleotídeos de Purina , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
19.
J Phys Chem B ; 127(16): 3641-3650, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37072125

RESUMO

The plasma membrane protects the interiors of cells from their surroundings and also plays a critical role in communication, sensing, and nutrient import. As a result, the cell membrane and its constituents are among the most important drug targets. Studying the cell membrane and the processes it facilitates is therefore crucial, but it is a highly complex environment that is difficult to access experimentally. Various model membrane systems have been developed to provide an environment in which membrane proteins can be studied in isolation. Among them, tethered bilayer lipid membranes (tBLMs) are a promising model system providing a solvent-free membrane environment which can be prepared by self-assembly, is resistant to mechanical disturbances and has a high electrical resistance. tBLMs are therefore uniquely suitable to study ion channels and charge transport processes. However, ion channels are often large, complex, multimeric structures and their function requires a particular lipid environment. In this paper, we show that SthK, a bacterial cyclic nucleotide gated (CNG) ion channel that is strongly dependent on the surrounding lipid composition, functions normally when embedded into a sparsely tethered lipid bilayer. As SthK has been very well characterized in terms of structure and function, it is well-suited to demonstrate the utility of tethered membrane systems. A model membrane system suitable for studying CNG ion channels would be useful, as this type of ion channel performs a wide range of physiological functions in bacteria, plants, and mammals and is therefore of fundamental scientific interest as well as being highly relevant to medicine.


Assuntos
Canais Iônicos , Técnicas Eletroquímicas , Canais Iônicos/química , Bicamadas Lipídicas/química , Microscopia de Força Atômica , AMP Cíclico/metabolismo , Bactérias/química , Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo
20.
Biophys J ; 122(7): 1158-1167, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36774534

RESUMO

Hydrophobic gating is an emerging mechanism in regulation of protein ion channels where the pore remains physically open but becomes dewetted to block ion permeation. Atomistic molecular dynamics simulations have played a crucial role in understanding hydrophobic gating by providing the molecular details to complement mutagenesis and structural studies. However, existing studies rely on direct simulations and do not quantitatively describe how the sequence and structural changes may control the delicate liquid-vapor equilibrium of confined water in the pore of the channel protein. To address this limitation, we explore two enhanced sampling methods, namely metadynamics and umbrella sampling, to derive free-energy profiles of pore hydration in both the closed and open states of big potassium (BK) channels, which are important in cardiovascular and neural systems. It was found that metadynamics required substantially longer sampling times and struggled to generate stably converged free-energy profiles due to the slow dynamics of cooperative pore water diffusion even in the barrierless limit. Using umbrella sampling, well-converged free-energy profiles can be readily generated for the wild-type BK channels as well as three mutants with pore-lining mutations experimentally known to dramatically perturb the channel gating voltage. The results show that the free energy of pore hydration faithfully reports the gating voltage of the channel, providing further support for hydrophobic gating in BK channels. Free-energy analysis of pore hydration should provide a powerful approach for quantitative studies of how protein sequence, structure, solution conditions, and/or drug binding may modulate hydrophobic gating in ion channels.


Assuntos
Ativação do Canal Iônico , Canais de Potássio Ativados por Cálcio de Condutância Alta , Canais Iônicos/química , Simulação de Dinâmica Molecular , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...